Source code for sugartensor.sg_transform

from __future__ import absolute_import
import sugartensor as tf
# noinspection PyPackageRequirements
import numpy as np


__author__ = 'buriburisuri@gmail.com'


#
# transform sugar functions
#

@tf.sg_sugar_func
[docs]def sg_identity(tensor, opt): r"""Returns the same tensor Args: tensor: A `Tensor` (automatically given by chain). opt: name : If provided, it replaces current tensor's name Returns: A `Tensor`. Has the same content as `tensor`. """ return tf.identity(tensor, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_cast(tensor, opt): r"""Casts a tensor to a new type. See `tf.cast()` in tensorflow. Args: tensor: A `Tensor` or `SparseTensor` (automatically given by chain). opt: dtype : The destination type. name : If provided, it replaces current tensor's name Returns: A `Tensor` or `SparseTensor` with same shape as `tensor`. """ assert opt.dtype is not None, 'dtype is mandatory.' return tf.cast(tensor, opt.dtype, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_float(tensor, opt): r"""Casts a tensor to floatx. See `tf.cast()` in tensorflow. Args: tensor: A `Tensor` or `SparseTensor` (automatically given by chain). opt: name : If provided, it replaces current tensor's name Returns: A `Tensor` or `SparseTensor` with same shape as `tensor`. """ return tf.cast(tensor, tf.sg_floatx, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_int(tensor, opt): r"""Casts a tensor to intx. See `tf.cast()` in tensorflow. Args: tensor: A `Tensor` or `SparseTensor` (automatically given by chain). opt: name: If provided, it replaces current tensor's name. Returns: A `Tensor` or `SparseTensor` with same shape as `tensor`. """ return tf.cast(tensor, tf.sg_intx, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_expand_dims(tensor, opt): r"""Inserts a new axis. See tf.expand_dims() in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : Dimension to expand. Default is -1. name: If provided, it replaces current tensor's name. Returns: A `Tensor`. """ opt += tf.sg_opt(axis=-1) return tf.expand_dims(tensor, opt.axis, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_squeeze(tensor, opt): r"""Removes axis of size 1 from the shape of a tensor. See `tf.squeeze()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : A tuple/list of integers or an integer. axis to remove. Default is -1. name: If provided, it replaces current tensor's name. Returns: A `Tensor`. """ opt += tf.sg_opt(axis=[-1]) opt.axis = opt.axis if isinstance(opt.axis, (tuple, list)) else [opt.axis] return tf.squeeze(tensor, opt.axis, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_flatten(tensor, opt): r"""Reshapes a tensor to `batch_size x -1`. See `tf.reshape()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: name: If provided, it replaces current tensor's name. Returns: A 2-D tensor. """ dim = np.prod(tensor.get_shape().as_list()[1:]) return tf.reshape(tensor, [-1, dim], name=opt.name)
@tf.sg_sugar_func
[docs]def sg_reshape(tensor, opt): r"""Reshapes a tensor. See `tf.reshape()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: shape: A tuple/list of integers. The destination shape. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ assert opt.shape is not None, 'shape is mandatory.' return tf.reshape(tensor, opt.shape, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_transpose(tensor, opt): r"""Permutes the dimensions according to `opt.perm`. See `tf.transpose()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: perm: A permutation of the dimensions of `tensor`. The target shape. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ assert opt.perm is not None, 'perm is mandatory' return tf.transpose(tensor, opt.perm, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_argmax(tensor, opt): r"""Returns the indices of the maximum values along the specified axis. See `tf.argmax()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis: Target axis. Default is the last one. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ opt += tf.sg_opt(axis=tensor.get_shape().ndims-1) return tf.argmax(tensor, opt.axis, opt.name)
@tf.sg_sugar_func
[docs]def sg_argmin(tensor, opt): r"""Returns the indices of the minimum values along the specified axis. See `tf.argin()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis: Target axis. Default is the last one. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ opt += tf.sg_opt(axis=tensor.get_shape().ndims - 1) return tf.argmin(tensor, opt.axis, opt.name)
@tf.sg_sugar_func
[docs]def sg_concat(tensor, opt): r"""Concatenates tensors along a axis. See `tf.concat()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: target: A `Tensor`. Must have the same rank as `tensor`, and all dimensions except `opt.dim` must be equal. axis : Target axis. Default is the last one. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ assert opt.target is not None, 'target is mandatory.' opt += tf.sg_opt(axis=tensor.get_shape().ndims-1) target = opt.target if isinstance(opt.target, (tuple, list)) else [opt.target] return tf.concat([tensor] + target, opt.axis, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_one_hot(tensor, opt): r"""Converts a tensor into a one-hot tensor. See `tf.one_hot()` in tensorflow. Args: tensor: A `Tensor` ( automatically given by chain ) opt: depth: The number of classes. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ assert opt.depth is not None, 'depth is mandatory.' return tf.one_hot(tensor, opt.depth, name=opt.name)
# noinspection PyUnusedLocal @tf.sg_sugar_func
[docs]def sg_to_sparse(tensor, opt): r"""Converts a dense tensor into a sparse tensor. See `tf.SparseTensor()` in tensorflow. Args: tensor: A `Tensor` with zero-padding (automatically given by chain). opt: name: If provided, replace current tensor's name. Returns: A `SparseTensor`. """ indices = tf.where(tf.not_equal(tensor.sg_float(), 0.)) return tf.SparseTensor(indices=indices, values=tf.gather_nd(tensor, indices) - 1, # for zero-based index shape=tf.shape(tensor).sg_cast(dtype=tf.int64))
# # reduce functions # @tf.sg_sugar_func
[docs]def sg_sum(tensor, opt): r"""Computes the sum of elements across axis of a tensor. See `tf.reduce_sum()` in tensorflow. Args: tensor: A `Tensor` with zero-padding (automatically given by chain). opt: axis: A tuple/list of integers or an integer. The axis to reduce. keep_dims: If true, retains reduced dimensions with length 1. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ return tf.reduce_sum(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_mean(tensor, opt): r"""Computes the mean of elements across axis of a tensor. See `tf.reduce_mean()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : A tuple/list of integers or an integer. The axis to reduce. keep_dims: If true, retains reduced dimensions with length 1. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ return tf.reduce_mean(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_prod(tensor, opt): r"""Computes the product of elements across axis of a tensor. See `tf.reduce_prod()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : A tuple/list of integers or an integer. The axis to reduce. keep_dims: If true, retains reduced dimensions with length 1. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ return tf.reduce_prod(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_min(tensor, opt): r"""Computes the minimum of elements across axis of a tensor. See `tf.reduce_min()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : A tuple/list of integers or an integer. The axis to reduce. keep_dims: If true, retains reduced dimensions with length 1. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ return tf.reduce_min(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_max(tensor, opt): r"""Computes the maximum of elements across axis of a tensor. See `tf.reduce_max()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : A tuple/list of integers or an integer. The axis to reduce. keep_dims: If true, retains reduced dimensions with length 1. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ return tf.reduce_max(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_all(tensor, opt): r"""Computes the "logical and" of elements across axis of a tensor. See `tf.reduce_all()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : A tuple/list of integers or an integer. The axis to reduce. keep_dims: If true, retains reduced dimensions with length 1. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ return tf.reduce_all(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_any(tensor, opt): r"""Computes the "logical or" of elements across axis of a tensor. See `tf.reduce_any()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : A tuple/list of integers or an integer. The axis to reduce. keep_dims: If true, retains reduced dimensions with length 1. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ return tf.reduce_any(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
# # complicated transform function ( layer related ) # @tf.sg_sugar_func
[docs]def sg_pool(tensor, opt): r"""Performs the 2-D pooling on the `tensor`. Mostly used with sg_conv(). Args: tensor: A 4-D `Tensor` (automatically given by chain). opt: size: A tuple or list of integers of length 2 representing `[kernel height, kernel width]`. Can be an int if both values are the same. If not specified, (2, 2) is set implicitly. stride: A tuple or list of integers of length 2 or 4 representing stride dimensions. If the length is 2, i.e., (a, b), the stride is `[1, a, b, 1]`. If the length is 4, i.e., (a, b, c, d), the stride is `[a, b, c, d]`. Can be an int. If the length is an int, i.e., a, the stride is `[1, a, a, 1]`. The default value is [1, 1, 1, 1]. avg: Boolean. If True, average pooling is applied. Otherwise, max pooling. name: If provided, replace current tensor's name. Returns: A `Tensor`. The max pooled output tensor. """ # default stride and pad opt += tf.sg_opt(stride=(1, 2, 2, 1), pad='VALID') # shape stride opt.stride = opt.stride if isinstance(opt.stride, (list, tuple)) else [1, opt.stride, opt.stride, 1] opt.stride = [1, opt.stride[0], opt.stride[1], 1] if len(opt.stride) == 2 else opt.stride # shape size opt += tf.sg_opt(size=opt.stride) opt.size = opt.size if isinstance(opt.size, (list, tuple)) else [1, opt.size, opt.size, 1] opt.size = [1, opt.size[0], opt.size[1], 1] if len(opt.size) == 2 else opt.size if opt.avg: out = tf.nn.avg_pool(tensor, opt.size, opt.stride, opt.pad) else: out = tf.nn.max_pool(tensor, opt.size, opt.stride, opt.pad) return tf.identity(out, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_pool1d(tensor, opt): r"""Performs the 1-D pooling on the `tensor`. Args: tensor: A 3-D `Tensor` (automatically passed by decorator). opt: size: A positive `integer` representing `[kernel width]`. Default is 2. stride: A positive `integer`. The number of entries by which the filter is moved right at each step. Default is 2. avg: Boolean. If True, average pooling is applied. Otherwise, max pooling. name: If provided, replace current tensor's name. Returns: A tensor """ # default stride and pad opt += tf.sg_opt(stride=2, pad='VALID') opt += tf.sg_opt(size=opt.stride) if opt.avg: out = tf.nn.avg_pool(tensor.sg_expand_dims(axis=2), (1, opt.size, 1, 1), (1, opt.stride, 1, 1), opt.pad) else: out = tf.nn.max_pool(tensor.sg_expand_dims(axis=2), (1, opt.size, 1, 1), (1, opt.stride, 1, 1), opt.pad) return tf.identity(out.sg_squeeze(axis=2), name=opt.name)
@tf.sg_sugar_func
[docs]def sg_lookup(tensor, opt): r"""Looks up the `tensor`, which is the embedding matrix. Args: tensor: A tensor ( automatically given by chain ) opt: emb: A 2-D `Tensor`. An embedding matrix. name: If provided, replace current tensor's name. Returns: A `Tensor`. """ assert opt.emb is not None, 'emb is mandatory.' return tf.nn.embedding_lookup(opt.emb, tensor, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_reverse_seq(tensor, opt): r"""Reverses variable length slices. Before applying the pure tensorflow function tf.reverse_sequence, this function calculates sequence lengths by counting non-zeros. For example, ``` tensor = [[1, 2, 3, 0, 0], [4, 5, 0, 0, 0]] tensor.sg_reverse_seq() => [[3 2 1 0 0] [5 4 0 0 0]] ``` Args: tensor: A 2-D `Tensor` (automatically given by chain). opt: axis: Axis to reverse. Default is 1. name : If provided, it replaces current tensor's name. Returns: A `Tensor` with the same shape and type as `tensor`. """ # default sequence dimension opt += tf.sg_opt(axis=1) seq_len = tf.not_equal(tensor, tf.zeros_like(tensor)).sg_int().sg_sum(axis=opt.axis) return tf.reverse_sequence(tensor, seq_len, opt.axis, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_periodic_shuffle(tensor, opt): r""" Periodic shuffle transformation for SubPixel CNN. (see [Shi et al. 2016](http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf) Args: tensor: A tensor (automatically given by chain). opt: factor: factor to multiply shape by. Default is 2. name : If provided, it replaces current tensor's name. Returns: A tensor """ # default factor opt += tf.sg_opt(factor=2) # get current shape batch, row, col, channel = tensor.get_shape().as_list() # get target channel num channel_target = channel // (opt.factor * opt.factor) channel_factor = channel // channel_target # intermediate shape for shuffling shape_1 = [batch, row, col, channel_factor // opt.factor, channel_factor // opt.factor] shape_2 = [batch, row * opt.factor, col * opt.factor, 1] # reshape and transpose for periodic shuffling for each channel out = [] for i in range(channel_target): out.append((tensor[:, :, :, i*channel_factor:(i+1)*channel_factor]) .sg_reshape(shape=shape_1) .sg_transpose(perm=(0, 1, 3, 2, 4)) .sg_reshape(shape=shape_2)) # final output out = tf.concat(out, 3) return tf.identity(out, name=opt.name)
@tf.sg_sugar_func
[docs]def sg_inverse_periodic_shuffle(tensor, opt): r"""Inverse periodic shuffle transformation for SubPixel CNN. (see [Shi et al. 2016](http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf) Args: tensor: A tensor (automatically given by chain). opt: factor: factor to multiply shape by. Default is 2. name : If provided, it replaces current tensor's name. Returns: A tensor """ # default factor opt += tf.sg_opt(factor=2) # get current shape batch, row, col, channel = tensor.get_shape().as_list() # get target shape and channel num channel_factor = opt.factor * opt.factor # intermediate shape for shuffling shape_1 = [batch, row // opt.factor, col // opt.factor, channel_factor // opt.factor, channel_factor // opt.factor] shape_2 = [batch, row // opt.factor, col // opt.factor, channel_factor] # reshape and transpose for periodic shuffling for each channel out = [] for i in range(channel): out.append(tensor[:, :, :, i] .sg_expand_dims() .sg_reshape(shape=shape_1) .sg_transpose(perm=(0, 1, 3, 2, 4)) .sg_reshape(shape=shape_2)) # final output out = tf.concat(out, 3) return tf.identity(out, name=opt.name)