Source code for sugartensor.sg_queue

from __future__ import absolute_import
import sugartensor as tf
from functools import wraps
import threading
from tensorflow.python.platform import tf_logging as logging


__author__ = 'buriburisuri@gmail.com'


[docs]def sg_producer_func(func): r"""Decorates a function `func` as sg_producer_func. Args: func: A function to decorate. """ @wraps(func) def wrapper(**kwargs): r"""Manages arguments of `tf.sg_opt`. Args: **kwargs: source: A source queue list to enqueue dtypes: Data types of each tensor capacity: Queue capacity. Default is 32. num_threads: Number of threads. Default is 1. """ # default option opt = tf.sg_opt(kwargs) + tf.sg_opt(dtypes=[tf.sg_floatx], capacity=32, num_threads=1) # source queue list check assert opt.source is not None, 'source is mandatory.' if type(opt.source) is not list and type(opt.source) is not tuple: opt.source = [opt.source] if type(opt.dtypes) is not list and type(opt.dtypes) is not tuple: opt.dtypes = [opt.dtypes] assert len(opt.source) == len(opt.dtypes), 'Source and dtypes should have same length.' # enqueue function def enqueue_func(sess, op): # read data from source queue data = func(sess.run(opt.source)) # create feeder dict feed_dict = {} for ph, col in zip(placeholders, data): feed_dict[ph] = col # run session sess.run(op, feed_dict=feed_dict) # create place holder list placeholders = [] for dtype in opt.dtypes: placeholders.append(tf.placeholder(dtype=dtype)) # create FIFO queue queue = tf.FIFOQueue(opt.capacity, dtypes=opt.dtypes) # enqueue operation enqueue_op = queue.enqueue(placeholders) # create queue runner runner = _FuncQueueRunner(enqueue_func, queue, [enqueue_op] * opt.num_threads) # register to global collection tf.train.add_queue_runner(runner) # return de-queue operation return queue.dequeue() return wrapper
class _FuncQueueRunner(tf.train.QueueRunner): def __init__(self, func, queue=None, enqueue_ops=None, close_op=None, cancel_op=None, queue_closed_exception_types=None, queue_runner_def=None): # save ad-hoc function self.func = func # call super() super(_FuncQueueRunner, self).__init__(queue, enqueue_ops, close_op, cancel_op, queue_closed_exception_types, queue_runner_def) # pylint: disable=broad-except def _run(self, sess, enqueue_op, coord=None): if coord: coord.register_thread(threading.current_thread()) decremented = False try: while True: if coord and coord.should_stop(): break try: self.func(sess, enqueue_op) # call enqueue function except self._queue_closed_exception_types: # pylint: disable=catching-non-exception # This exception indicates that a queue was closed. with self._lock: self._runs_per_session[sess] -= 1 decremented = True if self._runs_per_session[sess] == 0: try: sess.run(self._close_op) except Exception as e: # Intentionally ignore errors from close_op. logging.vlog(1, "Ignored exception: %s", str(e)) return except Exception as e: # This catches all other exceptions. if coord: coord.request_stop(e) else: logging.error("Exception in QueueRunner: %s", str(e)) with self._lock: self._exceptions_raised.append(e) raise finally: # Make sure we account for all terminations: normal or errors. if not decremented: with self._lock: self._runs_per_session[sess] -= 1