Source code for sugartensor.sg_optimize

from __future__ import absolute_import
import tensorflow as tf

__author__ = 'buriburisuri@gmail.com'


# noinspection PyAbstractClass
[docs]class AdaMaxOptimizer(tf.train.Optimizer): r"""Optimizer that implements the Adamax algorithm. See [Kingma et. al., 2014](http://arxiv.org/abs/1412.6980) ([pdf](http://arxiv.org/pdf/1412.6980.pdf)). excerpted from https://github.com/openai/iaf/blob/master/tf_utils/adamax.py @@__init__ """ def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, use_locking=False, name="Adamax"): super(AdaMaxOptimizer, self).__init__(use_locking, name) self._lr = learning_rate self._beta1 = beta1 self._beta2 = beta2 # Tensor versions of the constructor arguments, created in _prepare(). self._lr_t = None self._beta1_t = None self._beta2_t = None def _prepare(self): self._lr_t = tf.convert_to_tensor(self._lr, name="learning_rate") self._beta1_t = tf.convert_to_tensor(self._beta1, name="beta1") self._beta2_t = tf.convert_to_tensor(self._beta2, name="beta2") def _create_slots(self, var_list): # Create slots for the first and second moments. for v in var_list: self._zeros_slot(v, "m", self._name) self._zeros_slot(v, "v", self._name) def _apply_dense(self, grad, var): lr_t = tf.cast(self._lr_t, var.dtype.base_dtype) beta1_t = tf.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype) if var.dtype.base_dtype == tf.float16: eps = 1e-7 # Can't use 1e-8 due to underflow -- not sure if it makes a big difference. else: eps = 1e-8 v = self.get_slot(var, "v") v_t = v.assign(beta1_t * v + (1. - beta1_t) * grad) m = self.get_slot(var, "m") m_t = m.assign(tf.maximum(beta2_t * m + eps, tf.abs(grad))) g_t = v_t / m_t var_update = tf.assign_sub(var, lr_t * g_t) return tf.group(*[var_update, m_t, v_t]) def _apply_sparse(self, grad, var): return self._apply_dense(grad, var)
# noinspection PyAbstractClass
[docs]class MaxPropOptimizer(tf.train.Optimizer): r"""Optimizer that implements the MaxProp algorithm by buriburisuri@gmail.com. """ def __init__(self, learning_rate=0.001, beta2=0.999, use_locking=False, name="MaxProp"): super(MaxPropOptimizer, self).__init__(use_locking, name) self._lr = learning_rate self._beta2 = beta2 # Tensor versions of the constructor arguments, created in _prepare(). self._lr_t = None self._beta2_t = None def _prepare(self): self._lr_t = tf.convert_to_tensor(self._lr, name="learning_rate") self._beta2_t = tf.convert_to_tensor(self._beta2, name="beta2") def _create_slots(self, var_list): # Create slots for the second moments. for v in var_list: self._zeros_slot(v, "m", self._name) def _apply_dense(self, grad, var): lr_t = tf.cast(self._lr_t, var.dtype.base_dtype) beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype) if var.dtype.base_dtype == tf.float16: eps = 1e-7 # Can't use 1e-8 due to underflow -- not sure if it makes a big difference. else: eps = 1e-8 m = self.get_slot(var, "m") m_t = m.assign(tf.maximum(beta2_t * m + eps, tf.abs(grad))) g_t = grad / m_t var_update = tf.assign_sub(var, lr_t * g_t) return tf.group(*[var_update, m_t]) def _apply_sparse(self, grad, var): return self._apply_dense(grad, var)