Source code for sugartensor.sg_net

from __future__ import absolute_import
import sugartensor as tf


__author__ = 'buriburisuri@gmail.com'


#
# VGG nets
#


@tf.sg_sugar_func
[docs]def sg_vgg_16(tensor, opt): r"""Applies vgg 16 model. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: tensor: A `Tensor` opt: num_class: An integer. Number of class. Default is 1000. conv_only: Boolean. If True, fc layers are not applied. Default is False. squeeze: Boolean. If True (default), the dimensions with size 1 in the final outputs will be removed. act: String. 'relu' (default). the activation function name bn: True or False(default). If True, batch normal will be applied reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String(Optional). If provided, used as the scope name of this network Returns: A `Tensor`. """ opt += tf.sg_opt(num_class=1000, conv_only=False, squeeze=True, act='relu', bn=False) # convolution layers with tf.sg_context(name=opt.name, act=opt.act, bn=opt.bn, reuse=opt.reuse): conv = (tensor .sg_conv(dim=64, name='conv1_1') .sg_conv(name='conv1_2') .sg_pool() .sg_conv(dim=128, name='conv2_1') .sg_conv(name='conv2_2') .sg_pool() .sg_conv(dim=256, name='conv3_1') .sg_conv(name='conv3_2') .sg_conv(name='conv3_3') .sg_pool() .sg_conv(dim=512, name='conv4_1') .sg_conv(name='conv4_2') .sg_conv(name='conv4_3') .sg_pool() .sg_conv(dim=512, name='conv5_1') .sg_conv(name='conv5_2') .sg_conv(name='conv5_3') .sg_pool()) # fully convolution layers with tf.sg_context(name=opt.name, act=opt.act, pad='VALID', bn=opt.bn, reuse=opt.reuse): fc = (conv .sg_conv(dim=4096, size=7, dout=opt.dout, name='fc1') .sg_conv(dim=4096, size=1, dout=opt.dout, name='fc2') .sg_conv(dim=opt.num_class, size=1, act='linear', name='fc3')) if opt.conv_only: return conv else: if opt.squeeze: return fc.sg_squeeze(axis=(1, 2)) else: return fc
@tf.sg_sugar_func
[docs]def sg_vgg_19(tensor, opt): r"""Applies vgg 19 model. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: tensor: A `Tensor`. opt: num_class: An integer. Number of class. Default is 1000. conv_only: Boolean. If True, fc layers are not applied. Default is False. squeeze: Boolean. If True (default), the dimensions with size 1 in the final outputs will be removed. act: String. 'relu' (default). the activation function name bn: True or False(default). If True, batch normal will be applied reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String(Optional). If provided, used as the scope name of this network Returns: A `Tensor`. """ opt += tf.sg_opt(num_class=1000, conv_only=False, squeeze=True, act='relu') # convolution layers with tf.sg_context(name=opt.name, act=opt.act, bn=opt.bn, reuse=opt.reuse): conv = (tensor .sg_conv(dim=64, name='conv1_1') .sg_conv(name='conv1_2') .sg_pool() .sg_conv(dim=128, name='conv2_1') .sg_conv(name='conv2_2') .sg_pool() .sg_conv(dim=256, name='conv3_1') .sg_conv(name='conv3_2') .sg_conv(name='conv3_3') .sg_conv(name='conv3_4') .sg_pool() .sg_conv(dim=512, name='conv4_1') .sg_conv(name='conv4_2') .sg_conv(name='conv4_3') .sg_conv(name='conv4_4') .sg_pool() .sg_conv(dim=512, name='conv5_1') .sg_conv(name='conv5_2') .sg_conv(name='conv5_3') .sg_conv(name='conv5_4') .sg_pool()) # fully convolution layers with tf.sg_context(name=opt.name, act=opt.act, pad='VALID', bn=opt.bn, reuse=opt.reuse): fc = (conv .sg_conv(dim=4096, size=7, dout=opt.dout, name='fc1') .sg_conv(dim=4096, size=1, dout=opt.dout, name='fc2') .sg_conv(dim=opt.num_class, size=1, act='linear', name='fc3')) if opt.conv_only: return conv else: if opt.squeeze: return fc.sg_squeeze(axis=(1, 2)) else: return fc
# # Residual nets ( version 2 ) # @tf.sg_sugar_func
[docs]def sg_resnet_50(x, opt): r"""Applies residual net 50 model. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: x: A `Tensor`. opt: num_class: An integer. Number of class. Default is 1000. conv_only: Boolean. If True, fc layers are not applied. Default is False. squeeze: Boolean. If True (default), the dimensions with size 1 in the final outputs will be removed. act: String. 'relu' (default). the activation function name reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String(Optional). If provided, used as the scope name of this network Returns: A `Tensor`. """ return _resnet_graph(x, opt, [3, 4, 6, 3])
@tf.sg_sugar_func
[docs]def sg_resnet_101(x, opt): r"""Applies residual net 101 model. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: x: A `Tensor`. opt: num_class: An integer. Number of class. Default is 1000. conv_only: Boolean. If True, fc layers are not applied. Default is False. squeeze: Boolean. If True (default), the dimensions with size 1 in the final outputs will be removed. act: String. 'relu' (default). the activation function name reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String(Optional). If provided, used as the scope name of this network Returns: A `Tensor`. """ return _resnet_graph(x, opt, [3, 4, 23, 3])
@tf.sg_sugar_func
[docs]def sg_resnet_152(x, opt): r"""Applies residual net 152 model. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: x: A `Tensor`. opt: num_class: An integer. Number of class. Default is 1000. conv_only: Boolean. If True, fc layers are not applied. Default is False. squeeze: Boolean. If True (default), the dimensions with size 1 in the final outputs will be removed. act: String. 'relu' (default). the activation function name reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String(Optional). If provided, used as the scope name of this network Returns: A `Tensor`. """ return _resnet_graph(x, opt, [3, 8, 36, 3])
@tf.sg_sugar_func
[docs]def sg_resnet_200(x, opt): r"""Applies residual net 200 model. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: x: A `Tensor`. opt: num_class: An integer. Number of class. Default is 1000. conv_only: Boolean. If True, fc layers are not applied. Default is False. squeeze: Boolean. If True (default), the dimensions with size 1 in the final outputs will be removed. act: String. 'relu' (default). the activation function name reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String(Optional). If provided, used as the scope name of this network Returns: A `Tensor`. """ return _resnet_graph(x, opt, [3, 24, 36, 3])
@tf.sg_sugar_func
[docs]def sg_densenet_121(x, opt): r"""Applies dense net 121 model. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: x: A `Tensor`. opt: k: An integer. The Growth rate of densenet. Default is 32. num_class: An integer. Number of class. Default is 1000. conv_only: Boolean. If True, fc layers are not applied. Default is False. squeeze: Boolean. If True (default), the dimensions with size 1 in the final outputs will be removed. act: String. 'relu' (default). the activation function name reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String(Optional). If provided, used as the scope name of this network Returns: A `Tensor`. """ return _densenet_graph(x, opt + tf.sg_opt(k=32), [6, 12, 24, 16])
@tf.sg_sugar_func
[docs]def sg_densenet_169(x, opt): r"""Applies dense net 169 model. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: x: A `Tensor`. opt: k: An integer. The Growth rate of densenet. Default is 32. num_class: An integer. Number of class. Default is 1000. conv_only: Boolean. If True, fc layers are not applied. Default is False. squeeze: Boolean. If True (default), the dimensions with size 1 in the final outputs will be removed. act: String. 'relu' (default). the activation function name reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String(Optional). If provided, used as the scope name of this network Returns: A `Tensor`. """ return _densenet_graph(x, opt + tf.sg_opt(k=32), [6, 12, 32, 32])
@tf.sg_sugar_func
[docs]def sg_densenet_201(x, opt): r"""Applies dense net 201 model. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: x: A `Tensor`. opt: k: An integer. The Growth rate of densenet. Default is 32. num_class: An integer. Number of class. Default is 1000. conv_only: Boolean. If True, fc layers are not applied. Default is False. squeeze: Boolean. If True (default), the dimensions with size 1 in the final outputs will be removed. act: String. 'relu' (default). the activation function name reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String(Optional). If provided, used as the scope name of this network Returns: A `Tensor`. """ return _densenet_graph(x, opt + tf.sg_opt(k=32), [6, 12, 48, 32])
@tf.sg_sugar_func
[docs]def sg_densenet_161(x, opt): r"""Applies dense net 161 model. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: x: A `Tensor`. opt: k: An integer. The Growth rate of densenet. Default is 48. num_class: An integer. Number of class. Default is 1000. conv_only: Boolean. If True, fc layers are not applied. Default is False. squeeze: Boolean. If True (default), the dimensions with size 1 in the final outputs will be removed. act: String. 'relu' (default). the activation function name reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String(Optional). If provided, used as the scope name of this network Returns: A `Tensor`. """ return _densenet_graph(x, opt + tf.sg_opt(k=48), [6, 12, 36, 24])
# # Residual net utility # @tf.sg_sugar_func
[docs]def sg_resnet_layer(x, opt): r"""Applies basic architecture of residual net. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: x: A `Tensor`. opt: dim: An integer. Dimension for this resnet layer num: Number of times to repeat act: String. 'relu' (default). the activation function name reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String. (optional) Used as convolution layer prefix Returns: A `Tensor`. """ assert opt.dim is not None, 'dim is mandatory.' assert opt.num is not None, 'num is mandatory.' # default stride opt += tf.sg_opt(stride=1, act='relu') # format convolutional layer name def cname(index): return opt.name if opt.name is None else opt.name + '_%d' % index with tf.sg_context(bias=False, reuse=opt.reuse): # 1st block out = (x .sg_bypass(act=opt.act, bn=True, name=cname(0)) .sg_conv(dim=opt.dim, size=1, act=opt.act, stride=opt.stride, bn=True, name=cname(1)) .sg_conv(dim=opt.dim, size=3, act=opt.act, bn=True, name=cname(2)) .sg_conv(dim=opt.dim*4, size=1, name=cname(3))) out += x.sg_conv(dim=opt.dim * 4, size=1, stride=opt.stride, name=cname(4)) # middle blocks for i in range(1, opt.num): out_new = (out .sg_bypass(act=opt.act, name=cname(4 * i + 1)) .sg_conv(dim=opt.dim, size=1, act=opt.act, bn=True, name=cname(4 * i + 2)) .sg_conv(dim=opt.dim, size=3, act=opt.act, bn=True, name=cname(4 * i + 3)) .sg_conv(dim=opt.dim*4, size=1, name=cname(4 * i + 4))) out += out_new return out
# construct residual network graphs def _resnet_graph(x, opt, nums): # default option opt += tf.sg_opt(num_class=1000, conv_only=False, squeeze=True, act='relu') # convolution layers ( residual net v2 arch ) with tf.sg_context(name=opt.name): conv = (x .sg_conv(dim=64, size=7, stride=2, bias=False, reuse=opt.reuse, name='conv1') .sg_pool(size=3, stride=2, pad='SAME') .sg_resnet_layer(dim=64, num=nums[0], stride=1, act=opt.act, reuse=opt.reuse, name='conv2') .sg_resnet_layer(dim=128, num=nums[1], stride=2, act=opt.act, reuse=opt.reuse, name='conv3') .sg_resnet_layer(dim=256, num=nums[2], stride=2, act=opt.act, reuse=opt.reuse, name='conv4') .sg_resnet_layer(dim=512, num=nums[3], stride=2, act=opt.act, reuse=opt.reuse, name='conv5') .sg_bypass(act=opt.act, bn=True, reuse=opt.reuse, name='final_act') # final activation .sg_pool(size=7, stride=1, avg=True)) # global average pool # fully convolution layers fc = conv.sg_conv(dim=opt.num_class, size=1, act='linear', bn=False, reuse=opt.reuse, name='fc') # return selectively if opt.conv_only: return conv else: if opt.squeeze: return fc.sg_squeeze(axis=(1, 2)) else: return fc # # Dense net utility # @tf.sg_sugar_func
[docs]def sg_densenet_layer(x, opt): r"""Applies basic architecture of densenet layer. Note that the fc layers in the original architecture will be replaced with fully convolutional layers. For convenience, We still call them fc layers, though. Args: x: A `Tensor`. opt: dim: An integer. Dimension for this resnet layer num: Number of times to repeat act: String. 'relu' (default). the activation function name trans: Boolean. If True(default), transition layer will be applied. reuse: Boolean(Optional). If True, all variables will be loaded from previous network. name: String. (optional) Used as convolution layer prefix Returns: A `Tensor`. """ assert opt.dim is not None, 'dim is mandatory.' assert opt.num is not None, 'num is mandatory.' # default stride opt += tf.sg_opt(stride=1, act='relu', trans=True) # format convolutional layer name def cname(index): return opt.name if opt.name is None else opt.name + '_%d' % index # dense layer with tf.sg_context(bias=False, reuse=opt.reuse): out = x for i in range(opt.num): # dense block out_new = (out .sg_bypass(act=opt.act, bn=True, name=cname(3 * i + 1)) .sg_conv(dim=opt.dim // 4, size=1, act=opt.act, bn=True, name=cname(3 * i + 2)) .sg_conv(dim=opt.dim, size=3, name=cname(3 * i + 3))) out = tf.concat([out_new, out], 3) # transition layer if opt.trans: out = (out .sg_bypass(act=opt.act, bn=True, name=cname(3 * i + 4)) .sg_conv(size=1, name=cname(3 * i + 5)) .sg_pool(avg=True)) return out
# construct dense network graphs def _densenet_graph(x, opt, nums): # default option opt += tf.sg_opt(num_class=1000, k=32, conv_only=False, squeeze=True, act='relu') # convolution layers ( dense net arch ) with tf.sg_context(name=opt.name): conv = (x .sg_conv(dim=opt.k, size=7, stride=2, bias=False, reuse=opt.reuse, name='conv1') .sg_pool(size=3, stride=2, pad='SAME') .sg_densenet_layer(dim=opt.k, num=nums[0], act=opt.act, reuse=opt.reuse, name='conv2') .sg_densenet_layer(dim=opt.k, num=nums[1], act=opt.act, reuse=opt.reuse, name='conv3') .sg_densenet_layer(dim=opt.k, num=nums[2], act=opt.act, reuse=opt.reuse, name='conv4') .sg_densenet_layer(dim=opt.k, num=nums[3], act=opt.act, trans=False, reuse=opt.reuse, name='conv5') .sg_bypass(act=opt.act, bn=True, reuse=opt.reuse, name='final_act') # final activation .sg_pool(size=7, stride=1, avg=True)) # global average pool # fully convolution layers fc = conv.sg_conv(dim=opt.num_class, size=1, act='linear', bn=False, reuse=opt.reuse, name='fc') # return selectively if opt.conv_only: return conv else: if opt.squeeze: return fc.sg_squeeze(axis=(1, 2)) else: return fc