Source code for sugartensor.sg_metric

from __future__ import absolute_import
import sugartensor as tf

__author__ = 'buriburisuri@gmail.com'


#
# evaluation layer
#


@tf.sg_sugar_func
[docs]def sg_accuracy(tensor, opt): r"""Returns accuracy of predictions. Args: tensor: A `Tensor`. Probability distributions or unscaled prediction scores. opt: target: A 'Tensor`. Labels. Returns: A `Tensor` of the same shape as `tensor`. Each value will be 1 if correct else 0. For example, ``` tensor = [[20.1, 18, -4.2], [0.04, 21.1, 31.3]] target = [[0, 1]] tensor.sg_accuracy(target=target) => [[ 1. 0.]] ``` """ assert opt.target is not None, 'target is mandatory.' opt += tf.sg_opt(k=1) # # calc accuracy out = tf.identity(tf.equal(tensor.sg_argmax(), tf.cast(opt.target, tf.int64)).sg_float(), name='acc') # out = tf.identity(tf.nn.in_top_k(tensor, opt.target, opt.k).sg_float(), name='acc') return out