Source code for sugartensor.sg_main

from __future__ import absolute_import
import types
from functools import wraps
import importlib
from contextlib import contextmanager

import sugartensor as tf


__author__ = 'buriburisuri@gmail.com'


#
# default float, int precision
#


sg_floatx = tf.float32
sg_intx = tf.int32
sg_eps = 1e-8

#
# global step
#

_global_step = tf.Variable(0, name='global_step', trainable=False)


[docs]def sg_global_step(): r"""Gets global step count Returns: A 0-D `Tensor`. """ global _global_step return _global_step
# # global phase(train or infer) flag # _phase = tf.Variable(False, name='phase', trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES]) _phase_train = _phase.assign(True) # phase set ops ( to train ) _phase_infer = _phase.assign(False) # phase set ops ( to infer )
[docs]def sg_phase(): r""" Gets current training phase Returns: A boolean `Tensor`. If True, it is in the training phase, otherwise inference phase. """ global _phase return _phase
[docs]def sg_set_train(sess): r"""Set current phase as training mode Args: sess: session to work Returns: None """ sess.run(_phase_train)
[docs]def sg_set_infer(sess): r"""Sets current phase as inference mode Args: sess: session to work Returns: None """ sess.run(_phase_infer)
# # context helpers # _context = tf.sg_opt() @contextmanager
[docs]def sg_context(**kwargs): r"""Context helper for computational graph building. Makes all elements within the with Block share the parameters. For example, in the following example, the default value of parameter `bn` will be set to True in the all layers within the with block. ``` with tf.sg_context(bn=True): ... ... ``` Args: **kwargs: in_dim: An integer. The size of input dimension, which is set to the last one by default. dim: An integer. The size of output dimension. Has the same value as in_dim by default. bn: Boolean. If True, batch normalization is applied. ln: Boolean. If True, layer normalization is applied. dout: A float of range [0, 100). A dropout rate. Default is 0.. bias: Boolean. If True (Default), biases are added. name: A name for the layer. By default, the function name is assigned. act: A name of activation function. e.g., `sigmoid`, `tanh`, etc. reuse: `True` or `None`; if `True`, we go into reuse mode for this `layer` scope as well as all sub-scopes; if `None`, we just inherit the parent scope reuse. Returns: None """ global _context # set options when enter _context = tf.sg_opt(kwargs) if _context.name: _context.context_name = _context.name _context.name = None with tf.variable_scope(_context.context_name): yield else: yield # clear options when exit _context = tf.sg_opt()
# # sugar function annotator #
[docs]def sg_sugar_func(func): r""" Decorates a function `func` so that it can be a sugar function. Sugar function can be used in a chainable manner. Args: func: function to decorate Returns: A sugar function. """ @wraps(func) def wrapper(tensor, **kwargs): # call sugar function out = func(tensor, tf.sg_opt(kwargs)) # save node info for reuse out._sugar = tf.sg_opt(func=func, arg=tf.sg_opt(kwargs)+_context, prev=tensor) # inject reuse function out.sg_reuse = types.MethodType(sg_reuse, out) return out return wrapper
# # layer function annotator #
[docs]def sg_layer_func(func): r"""Decorates a function `func` as a sg_layer function. Args: func: function to decorate """ @wraps(func) def wrapper(tensor, **kwargs): r"""Manages arguments of `tf.sg_opt`. Args: tensor: A `tensor` (automatically passed by decorator). kwargs: shape: A list of integers. The shape of `tensor`. Inferred if not specified. in_dim: An integer. The size of input dimension, which is set to the last one by default. dim: An integer. The size of output dimension. Has the same value as in_dim by default. bn: Boolean. If True, batch normalization is applied. ln: Boolean. If True, layer normalization is applied. dout: A float of range [0, 100). A dropout rate. Set to 0 by default. bias: Boolean. If True, biases are added. As a default, it is set to True name: A name for the layer. As a default, the function name is assigned. act: A name of activation function. e.g., `sigmoid`, `tanh`, etc. reuse: `True` or `None`; if `True`, we go into reuse mode for this `layer` scope as well as all sub-scopes; if `None`, we just inherit the parent scope reuse. """ from . import sg_initializer as init from . import sg_activation # kwargs parsing opt = tf.sg_opt(kwargs) + _context # set default argument try: shape = tensor.get_shape().as_list() # batch normalization off, layer normalization off, dropout off opt += tf.sg_opt(shape=shape, in_dim=shape[-1], dim=shape[-1], bn=False, ln=False, dout=0) assert not (opt.bn and opt.ln), 'one of batch normalization and layer normalization is available.' # disable bias when normalization on opt += tf.sg_opt(bias=not (opt.bn or opt.ln)) finally: pass # automatic layer naming if opt.name is None: # layer function name will be used as layer name opt.name = func.__name__.replace('sg_', '') # find existing layer names exist_layers = [] for t in tf.global_variables(): scope_name = tf.get_variable_scope().name prefix = scope_name + '/' if len(scope_name) > 0 else '' i = t.name.rfind(prefix + opt.name) if i >= 0: exist_layers.append(t.name[i:].split('/')[-2]) exist_layers = list(set(exist_layers)) # layer name numbering if len(exist_layers) == 0: opt.name += '_1' else: opt.name += '_%d' % (max([int(n.split('_')[-1]) for n in exist_layers]) + 1) with tf.variable_scope(opt.name, reuse=opt.reuse) as scope: # call layer function out = func(tensor, opt) # apply batch normalization if opt.bn: # offset, scale parameter beta = init.constant('beta', opt.dim) gamma = init.constant('gamma', opt.dim, value=1) # offset, scale parameter mean_running = init.constant('mean', opt.dim) variance_running = init.constant('variance', opt.dim, value=1) # calc batch mean, variance mean, variance = tf.nn.moments(out, axes=list(range(len(out.get_shape()) - 1))) # add running mean, variance to UPDATE_OP collection decay = 0.99 tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, mean_running.assign(mean_running * decay + mean * (1 - decay))) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, variance_running.assign(variance_running * decay + variance * (1 - decay))) # select mean, variance by training phase m, v = tf.cond(_phase, lambda: (mean, variance), # batch mean, variance lambda: (mean_running, variance_running)) # saved mean, variance # apply batch normalization out = tf.nn.batch_normalization(out, m, v, beta, gamma, tf.sg_eps) # apply layer normalization if opt.ln: # offset, scale parameter beta = init.constant('beta', opt.dim) gamma = init.constant('gamma', opt.dim, value=1) # calc layer mean, variance for final axis mean, variance = tf.nn.moments(out, axes=[len(out.get_shape()) - 1], keep_dims=True) # apply normalization out = (out - mean) / tf.sqrt(variance + tf.sg_eps) # apply parameter out = gamma * out + beta # apply activation if opt.act: out = getattr(sg_activation, 'sg_' + opt.act.lower())(out) # apply dropout if opt.dout: out = tf.cond(_phase, lambda: tf.nn.dropout(out, 1 - opt.dout), lambda: out) # rename tensor out = tf.identity(out, 'out') # add final output summary if not scope.reuse: tf.sg_summary_activation(out) # save node info for reuse out._sugar = tf.sg_opt(func=func, arg=tf.sg_opt(kwargs) + _context, prev=tensor, is_layer=True, name=opt.name) # inject reuse function out.sg_reuse = types.MethodType(sg_reuse, out) return out return wrapper
[docs]def sg_rnn_layer_func(func): r"""Decorates function as sg_rnn_layer functions. Args: func: function to decorate """ @wraps(func) def wrapper(tensor, **kwargs): r"""Manages arguments of `tf.sg_opt`. Args: tensor: automatically passed by decorator kwargs: in_dim: An integer. The size of input dimension, which is set to the last one by default. dim: An integer. The size of output dimension. Has the same value as in_dim by default. ln: Boolean. If True, layer normalization is applied. bias: Boolean. If True, biases are added. As a default, it is set to True name: A name for the layer. As a default, the function name is assigned. reuse: `True` or `None`; if `True`, we go into reuse mode for this `layer` scope as well as all sub-scopes; if `None`, we just inherit the parent scope reuse. """ # kwargs parsing opt = tf.sg_opt(kwargs) + _context # set default argument try: shape = tensor.get_shape().as_list() # dropout off opt += tf.sg_opt(shape=shape, in_dim=shape[-1], dim=shape[-1], dout=0) # disable bias when normalization on opt += tf.sg_opt(bias=not opt.ln) finally: pass # automatic layer naming if opt.name is None: # layer function name will be used as layer name opt.name = func.__name__.replace('sg_', '') # find existing layer names exist_layers = [] for t in tf.global_variables(): scope_name = tf.get_variable_scope().name prefix = scope_name + '/' if len(scope_name) > 0 else '' i = t.name.rfind(prefix + opt.name) if i >= 0: exist_layers.append(t.name[i:].split('/')[-2]) exist_layers = list(set(exist_layers)) # layer name numbering if len(exist_layers) == 0: opt.name += '_1' else: opt.name += '_%d' % (max([int(n.split('_')[-1]) for n in exist_layers]) + 1) with tf.variable_scope(opt.name, reuse=opt.reuse) as scope: # call layer function out = func(tensor, opt) # apply dropout if opt.dout: out = tf.cond(_phase, lambda: tf.nn.dropout(out, 1 - opt.dout), lambda: out) # rename tensor out = tf.identity(out, 'out') # add final output summary if scope.reuse: tf.sg_summary_activation(out) # save node info for reuse out._sugar = tf.sg_opt(func=func, arg=tf.sg_opt(kwargs) + _context, prev=tensor, is_layer=True, name=opt.name) # inject reuse function out.sg_reuse = types.MethodType(sg_reuse, out) return out return wrapper
# # reuse functions for graph cloning # # noinspection PyProtectedMember
[docs]def sg_reuse(tensor, **opt): r""" Reconstruct computational graph of `tensor` so all the parameters can be reused and replace its input tensor with `opt.input`. Args: tensor: A `Tensor` (automatically given by chaining). **opt: input: A `Tensor` that will replace the original input tensor. Returns: Reconstructed tensor nodes. """ opt = tf.sg_opt(opt) assert hasattr(tensor, '_sugar'), 'cannot reuse this node.' assert opt.input is not None, 'input is mandatory.' # get all nodes in this graph nodes, prev = [tensor], tensor._sugar.prev while prev is not None: nodes = [prev] + nodes prev = prev._sugar.prev if hasattr(prev, '_sugar') else None # create graph again for this input out = opt.input for node in nodes[1:]: # exclude head node if node._sugar.is_layer: fn = tf.sg_layer_func(node._sugar.func) if node._sugar.arg.context_name: with tf.variable_scope(node._sugar.arg.context_name): out = fn(out, **(node._sugar.arg + tf.sg_opt(name=node._sugar.name, reuse=True))) else: out = fn(out, **(node._sugar.arg + tf.sg_opt(name=node._sugar.name, reuse=True))) else: out = node._sugar.func(out, node._sugar.arg) return out
# # input wrapper function #
[docs]def sg_input(shape=None, dtype=sg_floatx, name=None): r"""Creates a placeholder. Args: shape: A tuple/list of integers. If an integers is given, it will turn to a list. dtype: A data type. Default is float32. name: A name for the placeholder. Returns: A wrapped placeholder `Tensor`. """ if shape is None: return tf.placeholder(dtype, shape=None, name=name) else: if not isinstance(shape, (list, tuple)): shape = [shape] return tf.placeholder(dtype, shape=[None] + list(shape), name=name)
# # helper function for sugar and layer function injection #
[docs]def sg_inject(path, mod_name): r"""Converts all functions in the given Python module to sugar functions so that they can be used in a chainable manner. Args: path: A string. Path to the Python module mod_name: A string. The name of the Python module to inject. Returns: None """ # import module import sys if path not in list(sys.path): sys.path.append(path) globals()[mod_name] = importlib.import_module(mod_name) # find functions for func_name in dir(globals()[mod_name]): if isinstance(globals()[mod_name].__dict__.get(func_name), types.FunctionType): if not func_name.startswith('_'): # inject to tf.Variable type exec('tf.Variable.%s = %s.%s' % (func_name, mod_name, func_name)) # inject to tf.Tensor type exec('tf.Tensor.%s = %s.%s' % (func_name, mod_name, func_name))
[docs]def sg_inject_func(func): r"""Converts the function `func` to a sugar function so that it can be used in a chainable manner. Args: func: A function to inject. Returns: None """ # inject to tf.Variable type exec ('tf.Variable.%s = func' % func.__name__) # inject to tf.Tensor type exec ('tf.Tensor.%s = func' % func.__name__)
# # Queue Wrapper Annotator # # noinspection PyUnboundLocalVariable @contextmanager
[docs]def sg_queue_context(sess=None): r"""Context helper for queue routines. Args: sess: A session to open queues. If not specified, a new session is created. Returns: None """ # default session sess = tf.get_default_session() if sess is None else sess # thread coordinator coord = tf.train.Coordinator() try: # start queue thread threads = tf.train.start_queue_runners(sess, coord) yield finally: # stop queue thread coord.request_stop() # wait thread to exit. coord.join(threads)
# # Command line argument util funcs # # noinspection PyProtectedMember
[docs]def sg_arg(): r"""Gets current command line options Returns: tf.sg_opt instance that is updated with current commandd line options. """ if not tf.app.flags.FLAGS.__dict__['__parsed']: tf.app.flags.FLAGS._parse_flags() return tf.sg_opt(tf.app.flags.FLAGS.__dict__['__flags'])
[docs]def sg_arg_def(**kwargs): r"""Defines command line options Args: **kwargs: key: A name for the option. value : Default value or a tuple of (default value, description). Returns: None For example, ``` # Either of the following two lines will define `--n_epoch` command line argument and set its default value as 1. tf.sg_arg_def(n_epoch=1) tf.sg_arg_def(n_epoch=(1, 'total number of epochs')) ``` """ for k, v in kwargs.items(): if type(v) is tuple or type(v) is list: v, c = v[0], v[1] else: c = k if type(v) is str: tf.app.flags.DEFINE_string(k, v, c) elif type(v) is int: tf.app.flags.DEFINE_integer(k, v, c) elif type(v) is float: tf.app.flags.DEFINE_float(k, v, c) elif type(v) is bool: tf.app.flags.DEFINE_bool(k, v, c)