from __future__ import absolute_import
import sugartensor as tf
__author__ = 'buriburisuri@gmail.com'
@tf.sg_sugar_func
[docs]def sg_ce(tensor, opt):
r"""Returns softmax cross entropy loss between `tensor` and `target`.
Args:
tensor: A `Tensor`. Logits. Unscaled log probabilities.
opt:
target: A `Tensor` with the same length in the first dimension as the `tensor`. Labels.
one_hot: Boolean. Whether to treat the labels as one-hot encoding. Default is False.
mask: Boolean. If True, zeros in the target will be excluded from the calculation.
name: A `string`. A name to display in the tensor board web UI.
Returns:
A 1-D `Tensor` with the same shape as `tensor`.
For example,
```
tensor = [[[2, -1, 3], [3, 1, -2]]]
target = [[2, 1]]
tensor.sg_ce(target=target) => [[ 0.32656264 2.13284516]]
```
For example,
```
tensor = [[2, -1, 3], [3, 1, -2]]
target = [[0, 0, 1], [1, 0, 0]]
tensor.sg_ce(target=target, one_hot=True) => [ 0.32656264 0.13284527]
```
"""
opt += tf.sg_opt(one_hot=False)
assert opt.target is not None, 'target is mandatory.'
if opt.one_hot:
out = tf.identity(tf.nn.softmax_cross_entropy_with_logits(labels=opt.target, logits=tensor), 'ce')
else:
out = tf.identity(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=opt.target, logits=tensor), 'ce')
# masking loss
if opt.mask:
out *= tf.not_equal(opt.target, tf.zeros_like(opt.target)).sg_float()
# add summary
tf.sg_summary_loss(out, name=opt.name)
return out
@tf.sg_sugar_func
[docs]def sg_bce(tensor, opt):
r"""Returns sigmoid cross entropy loss between `tensor` and `target`.
Args:
tensor: A `Tensor`. Logits. Unscaled log probabilities.
opt:
target: A `Tensor` with the same shape and dtype as `tensor`. Labels.
name: A `string`. A name to display in the tensor board web UI.
Returns:
A `Tensor` of the same shape as `tensor`
For example,
```
tensor = [[2, -1, 3], [3, 1, -2]]
target = [[0, 1, 1], [1, 1, 0]]
tensor.sg_bce(target=target) => [[ 2.12692809 1.31326163 0.04858733]
[ 0.04858733 0.31326166 0.12692805]]
```
"""
assert opt.target is not None, 'target is mandatory.'
out = tf.identity(tf.nn.sigmoid_cross_entropy_with_logits(labels=opt.target, logits=tensor), 'bce')
# add summary
tf.sg_summary_loss(out, name=opt.name)
return out
@tf.sg_sugar_func
[docs]def sg_mse(tensor, opt):
r"""Returns squared error between `tensor` and `target`.
Args:
tensor: A `Tensor`.
opt:
target: A `Tensor` with the same shape and dtype as `tensor`.
name: A `string`. A name to display in the tensor board web UI.
Returns:
A `Tensor` of the same shape and dtype as `tensor`
For example,
```
tensor = [[34, 11, 40], [13, 30, 42]]
target = [[34, 10, 41], [14, 31, 40]]
tensor.sg_mse(target=target) => [[ 0. 1. 1.]
[ 1. 1. 4.]]
```
"""
assert opt.target is not None, 'target is mandatory.'
# squared error
out = tf.identity(tf.square(tensor - opt.target), 'mse')
# add summary
tf.sg_summary_loss(out, name=opt.name)
return out
@tf.sg_sugar_func
[docs]def sg_mae(tensor, opt):
r"""Returns absolute error between `tensor` and `target`.
Args:
tensor: A `Tensor`.
opt:
target: A `Tensor` with the same shape and dtype as `tensor`.
name: A `string`. A name to display in the tensor board web UI.
Returns:
A `Tensor` of the same shape and dtype as `tensor`
For example,
```
tensor = [[34, 11, 40], [13, 30, 42]]
target = [[34, 10, 41], [14, 31, 40]]
tensor.sg_mse(target=target) => [[ 0. 1. 1.]
[ 1. 1. 2.]]
```
"""
assert opt.target is not None, 'target is mandatory.'
# absolute error
out = tf.identity(tf.abs(tensor - opt.target), 'mae')
# add summary
tf.sg_summary_loss(out, name=opt.name)
return out
@tf.sg_sugar_func
[docs]def sg_hinge(tensor, opt):
r"""Returns hinge loss between `tensor` and `target`.
Args:
tensor: A `Tensor`.
opt:
target: A `Tensor`. Labels.
margin: An int. Maximum margin. Default is 1.
name: A `string`. A name to display in the tensor board web UI.
Returns:
A `Tensor`.
For example,
```
tensor = [[30, 10, 40], [13, 30, 42]]
target = [[0, 0, 1], [0, 1, 0]]
tensor.sg_hinge(target=target, one_hot=True) => [[ 1. 1. 0.]
[ 1. 0. 1.]]
```
"""
assert opt.target is not None, 'target is mandatory.'
# default margin
opt += tf.sg_opt(margin=1)
# reshape target
shape = tensor.get_shape().as_list()
broadcast_shape = [-1] + [1] * (len(shape) - 2) + [shape[-1]]
target = tf.cast(tf.reshape(opt.target, broadcast_shape), tf.sg_floatx)
# hinge loss
out = tf.identity(tf.maximum(opt.margin - target * tensor, 0), 'hinge')
# add summary
tf.sg_summary_loss(out, name=opt.name)
return out
@tf.sg_sugar_func
[docs]def sg_ctc(tensor, opt):
r"""Computes the CTC (Connectionist Temporal Classification) Loss between `tensor` and `target`.
Args:
tensor: A 3-D `float Tensor`.
opt:
target: A `Tensor` with the same length in the first dimension as the `tensor`. Labels. ( Dense tensor )
name: A `string`. A name to display in the tensor board web UI.
Returns:
A 1-D `Tensor` with the same length in the first dimension of the `tensor`.
For example,
```
tensor = [[[2., -1., 3.], [3., 1., -2.]], [[1., -1., 2.], [3., 1., -2.]]]
target = [[2., 1.], [2., 3.]]
tensor.sg_ctc(target=target) => [ 4.45940781 2.43091154]
```
"""
assert opt.target is not None, 'target is mandatory.'
# default sequence length
shape = tf.shape(tensor)
opt += tf.sg_opt(seq_len=tf.ones((shape[0],), dtype=tf.sg_intx) * shape[1])
# ctc loss
out = tf.nn.ctc_loss(tensor, opt.target.sg_to_sparse(), opt.seq_len, time_major=False)
out = tf.identity(out, 'ctc')
# add summary
tf.sg_summary_loss(out, name=opt.name)
return out