Source code for sugartensor.sg_loss

from __future__ import absolute_import
import sugartensor as tf

__author__ = 'buriburisuri@gmail.com'


@tf.sg_sugar_func
[docs]def sg_ce(tensor, opt): r"""Returns softmax cross entropy loss between `tensor` and `target`. Args: tensor: A `Tensor`. Logits. Unscaled log probabilities. opt: target: A `Tensor` with the same length in the first dimension as the `tensor`. Labels. one_hot: Boolean. Whether to treat the labels as one-hot encoding. Default is False. mask: Boolean. If True, zeros in the target will be excluded from the calculation. name: A `string`. A name to display in the tensor board web UI. Returns: A 1-D `Tensor` with the same shape as `tensor`. For example, ``` tensor = [[[2, -1, 3], [3, 1, -2]]] target = [[2, 1]] tensor.sg_ce(target=target) => [[ 0.32656264 2.13284516]] ``` For example, ``` tensor = [[2, -1, 3], [3, 1, -2]] target = [[0, 0, 1], [1, 0, 0]] tensor.sg_ce(target=target, one_hot=True) => [ 0.32656264 0.13284527] ``` """ opt += tf.sg_opt(one_hot=False) assert opt.target is not None, 'target is mandatory.' if opt.one_hot: out = tf.identity(tf.nn.softmax_cross_entropy_with_logits(labels=opt.target, logits=tensor), 'ce') else: out = tf.identity(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=opt.target, logits=tensor), 'ce') # masking loss if opt.mask: out *= tf.not_equal(opt.target, tf.zeros_like(opt.target)).sg_float() # add summary tf.sg_summary_loss(out, name=opt.name) return out
@tf.sg_sugar_func
[docs]def sg_bce(tensor, opt): r"""Returns sigmoid cross entropy loss between `tensor` and `target`. Args: tensor: A `Tensor`. Logits. Unscaled log probabilities. opt: target: A `Tensor` with the same shape and dtype as `tensor`. Labels. name: A `string`. A name to display in the tensor board web UI. Returns: A `Tensor` of the same shape as `tensor` For example, ``` tensor = [[2, -1, 3], [3, 1, -2]] target = [[0, 1, 1], [1, 1, 0]] tensor.sg_bce(target=target) => [[ 2.12692809 1.31326163 0.04858733] [ 0.04858733 0.31326166 0.12692805]] ``` """ assert opt.target is not None, 'target is mandatory.' out = tf.identity(tf.nn.sigmoid_cross_entropy_with_logits(labels=opt.target, logits=tensor), 'bce') # add summary tf.sg_summary_loss(out, name=opt.name) return out
@tf.sg_sugar_func
[docs]def sg_mse(tensor, opt): r"""Returns squared error between `tensor` and `target`. Args: tensor: A `Tensor`. opt: target: A `Tensor` with the same shape and dtype as `tensor`. name: A `string`. A name to display in the tensor board web UI. Returns: A `Tensor` of the same shape and dtype as `tensor` For example, ``` tensor = [[34, 11, 40], [13, 30, 42]] target = [[34, 10, 41], [14, 31, 40]] tensor.sg_mse(target=target) => [[ 0. 1. 1.] [ 1. 1. 4.]] ``` """ assert opt.target is not None, 'target is mandatory.' # squared error out = tf.identity(tf.square(tensor - opt.target), 'mse') # add summary tf.sg_summary_loss(out, name=opt.name) return out
@tf.sg_sugar_func
[docs]def sg_mae(tensor, opt): r"""Returns absolute error between `tensor` and `target`. Args: tensor: A `Tensor`. opt: target: A `Tensor` with the same shape and dtype as `tensor`. name: A `string`. A name to display in the tensor board web UI. Returns: A `Tensor` of the same shape and dtype as `tensor` For example, ``` tensor = [[34, 11, 40], [13, 30, 42]] target = [[34, 10, 41], [14, 31, 40]] tensor.sg_mse(target=target) => [[ 0. 1. 1.] [ 1. 1. 2.]] ``` """ assert opt.target is not None, 'target is mandatory.' # absolute error out = tf.identity(tf.abs(tensor - opt.target), 'mae') # add summary tf.sg_summary_loss(out, name=opt.name) return out
@tf.sg_sugar_func
[docs]def sg_hinge(tensor, opt): r"""Returns hinge loss between `tensor` and `target`. Args: tensor: A `Tensor`. opt: target: A `Tensor`. Labels. margin: An int. Maximum margin. Default is 1. name: A `string`. A name to display in the tensor board web UI. Returns: A `Tensor`. For example, ``` tensor = [[30, 10, 40], [13, 30, 42]] target = [[0, 0, 1], [0, 1, 0]] tensor.sg_hinge(target=target, one_hot=True) => [[ 1. 1. 0.] [ 1. 0. 1.]] ``` """ assert opt.target is not None, 'target is mandatory.' # default margin opt += tf.sg_opt(margin=1) # reshape target shape = tensor.get_shape().as_list() broadcast_shape = [-1] + [1] * (len(shape) - 2) + [shape[-1]] target = tf.cast(tf.reshape(opt.target, broadcast_shape), tf.sg_floatx) # hinge loss out = tf.identity(tf.maximum(opt.margin - target * tensor, 0), 'hinge') # add summary tf.sg_summary_loss(out, name=opt.name) return out
@tf.sg_sugar_func
[docs]def sg_ctc(tensor, opt): r"""Computes the CTC (Connectionist Temporal Classification) Loss between `tensor` and `target`. Args: tensor: A 3-D `float Tensor`. opt: target: A `Tensor` with the same length in the first dimension as the `tensor`. Labels. ( Dense tensor ) name: A `string`. A name to display in the tensor board web UI. Returns: A 1-D `Tensor` with the same length in the first dimension of the `tensor`. For example, ``` tensor = [[[2., -1., 3.], [3., 1., -2.]], [[1., -1., 2.], [3., 1., -2.]]] target = [[2., 1.], [2., 3.]] tensor.sg_ctc(target=target) => [ 4.45940781 2.43091154] ``` """ assert opt.target is not None, 'target is mandatory.' # default sequence length shape = tf.shape(tensor) opt += tf.sg_opt(seq_len=tf.ones((shape[0],), dtype=tf.sg_intx) * shape[1]) # ctc loss out = tf.nn.ctc_loss(tensor, opt.target.sg_to_sparse(), opt.seq_len, time_major=False) out = tf.identity(out, 'ctc') # add summary tf.sg_summary_loss(out, name=opt.name) return out