Source code for sugartensor.sg_layer

from __future__ import absolute_import
import sugartensor as tf


__author__ = 'buriburisuri@gmail.com'


#
# neural network layers
#


# noinspection PyUnusedLocal
@tf.sg_layer_func
[docs]def sg_bypass(tensor, opt): r"""Returns the input tensor itself. Args: tensor: A `Tensor` (automatically passed by decorator). opt: bn: Boolean. If True, batch normalization is applied. ln: Boolean. If True, layer normalization is applied. dout: A float of range [0, 100). A dropout rate. Default is 0. act: A name of activation function. e.g., `sigmoid`, `tanh`, etc. Returns: The same tensor as `tensor`. """ return tensor
@tf.sg_layer_func
[docs]def sg_dense(tensor, opt): r"""Applies a full connection. Args: tensor: A 2-D tensor (automatically passed by decorator). opt: in_dim: An `integer`. The size of input dimension. dim: An `integer`. The size of output dimension. bias: Boolean. If True, biases are added. Returns: A `Tensor` with the same type as `tensor`. """ # parameter initialize w = tf.sg_initializer.he_uniform('W', (opt.in_dim, opt.dim)) b = tf.sg_initializer.constant('b', opt.dim) if opt.bias else 0 # apply transform out = tf.matmul(tensor, w) + b return out
@tf.sg_layer_func
[docs]def sg_conv(tensor, opt): r"""Applies a 2-D convolution. Args: tensor: A 4-D `Tensor` (automatically passed by decorator). opt: size: A tuple/list of positive integers of length 2 representing `[kernel height, kernel width]`. Can be an integer if both values are the same. If not specified, (3, 3) is set implicitly. stride: A tuple/list of positive integers of length 2 or 4 representing stride dimensions. If the length is 2, i.e., (a, b), the stride is `[1, a, b, 1]`. If the length is 4, i.e., (a, b, c, d), the stride is `[a, b, c, d]`. Can be an integer. If the length is a, the stride is `[1, a, a, 1]`. Default value is [1, 1, 1, 1]. in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. pad: Either `SAME` (Default) or `VALID`. bias: Boolean. If True, biases are added. Returns: A `Tensor` with the same type as `tensor`. """ # default options opt += tf.sg_opt(size=(3, 3), stride=(1, 1, 1, 1), pad='SAME') opt.size = opt.size if isinstance(opt.size, (tuple, list)) else [opt.size, opt.size] opt.stride = opt.stride if isinstance(opt.stride, (tuple, list)) else [1, opt.stride, opt.stride, 1] opt.stride = [1, opt.stride[0], opt.stride[1], 1] if len(opt.stride) == 2 else opt.stride # parameter initialize w = tf.sg_initializer.he_uniform('W', (opt.size[0], opt.size[1], opt.in_dim, opt.dim)) b = tf.sg_initializer.constant('b', opt.dim) if opt.bias else 0 # apply convolution out = tf.nn.conv2d(tensor, w, strides=opt.stride, padding=opt.pad) + b return out
@tf.sg_layer_func
[docs]def sg_conv1d(tensor, opt): r"""Applies a 1-D convolution. Args: tensor: A 3-D `Tensor` (automatically passed by decorator). opt: size: A positive `integer` representing `[kernel width]`. If not specified, 2 is set implicitly. stride: A positive `integer`. The number of entries by which the filter is moved right at each step. in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. pad: Either `SAME` (Default) or `VALID`. bias: Boolean. If True, biases are added. Returns: A `Tensor` with the same type as `tensor`. """ # default options opt += tf.sg_opt(size=2, stride=1, pad='SAME') # parameter tf.sg_initializer w = tf.sg_initializer.he_uniform('W', (opt.size, opt.in_dim, opt.dim)) b = tf.sg_initializer.constant('b', opt.dim) if opt.bias else 0 # apply convolution out = tf.nn.conv1d(tensor, w, stride=opt.stride, padding=opt.pad) + b return out
@tf.sg_layer_func
[docs]def sg_aconv(tensor, opt): r"""Applies a 2-D atrous (or dilated) convolution. Args: tensor: A 4-D `Tensor` (automatically passed by decorator). opt: size: A tuple/list of positive integers of length 2 representing `[kernel height, kernel width]`. Can be an integer if both values are the same. If not specified, (3, 3) is set automatically. rate: A positive integer. The stride with which we sample input values across the `height` and `width` dimensions. Default is 2. in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. pad: Either `SAME` (Default) or `VALID`. bias: Boolean. If True, biases are added. Returns: A `Tensor` with the same type as `tensor`. """ # default options opt += tf.sg_opt(size=(3, 3), rate=2, pad='SAME') opt.size = opt.size if isinstance(opt.size, (tuple, list)) else [opt.size, opt.size] # parameter tf.sg_initializer w = tf.sg_initializer.he_uniform('W', (opt.size[0], opt.size[1], opt.in_dim, opt.dim)) b = tf.sg_initializer.constant('b', opt.dim) if opt.bias else 0 # apply convolution out = tf.nn.atrous_conv2d(tensor, w, rate=opt.rate, padding=opt.pad) + b return out
@tf.sg_layer_func
[docs]def sg_aconv1d(tensor, opt): r"""Applies 1-D atrous (or dilated) convolution. Args: tensor: A 3-D `Tensor` (automatically passed by decorator). opt: causal: Boolean. If True, zeros are padded before the time axis such that each activation unit doesn't have receptive neurons beyond the equivalent time step. size: A positive `integer` representing `[kernel width]`. As a default it is set to 2 if causal is True, 3 otherwise. rate: A positive `integer`. The stride with which we sample input values across the `height` and `width` dimensions. Default is 1. in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. pad: Either `SAME` (Default) or `VALID`. bias: Boolean. If True, biases are added. Returns: A `Tensor` with the same type as `tensor`. """ # default options opt += tf.sg_opt(size=(2 if opt.causal else 3), rate=1, pad='SAME') # parameter tf.sg_initializer w = tf.sg_initializer.he_uniform('W', (1, opt.size, opt.in_dim, opt.dim)) b = tf.sg_initializer.constant('b', opt.dim) if opt.bias else 0 if opt.causal: # pre-padding for causality if opt.pad == 'SAME': pad_len = (opt.size - 1) * opt.rate # padding size x = tf.pad(tensor, [[0, 0], [pad_len, 0], [0, 0]]).sg_expand_dims(axis=1) else: x = tensor.sg_expand_dims(axis=1) # apply 2d convolution out = tf.nn.atrous_conv2d(x, w, rate=opt.rate, padding='VALID') + b else: # apply 2d convolution out = tf.nn.atrous_conv2d(tensor.sg_expand_dims(axis=1), w, rate=opt.rate, padding=opt.pad) + b # reduce dimension # noinspection PyUnresolvedReferences out = out.sg_squeeze(axis=1) return out
@tf.sg_layer_func
[docs]def sg_upconv(tensor, opt): r"""Applies a up convolution (or convolution transpose). Args: tensor: A 4-D `Tensor` (automatically passed by decorator). opt: size: A tuple/list of integers of length 2 representing `[kernel height, kernel width]`. Can be an integer if both values are the same. If not specified, (4, 4) is set implicitly. Default value is [1, 2, 2, 1]. stride: A tuple/list of integers of length 2 or 4 representing stride dimensions. If the length is 2, i.e., (a, b), the stride is `[1, a, b, 1]`. If the length is 4, i.e., (a, b, c, d), the stride is `[a, b, c, d]`. Can be an integer. If the length is a, the stride is `[1, a, a, 1]`. in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. pad: Either `SAME` (Default) or `VALID`. bias: Boolean. If True, biases are added. Returns: A `Tensor` with the same type as `tensor`. """ # default options opt += tf.sg_opt(size=(4, 4), stride=(1, 2, 2, 1), pad='SAME') opt.size = opt.size if isinstance(opt.size, (tuple, list)) else [opt.size, opt.size] opt.stride = opt.stride if isinstance(opt.stride, (tuple, list)) else [1, opt.stride, opt.stride, 1] opt.stride = [1, opt.stride[0], opt.stride[1], 1] if len(opt.stride) == 2 else opt.stride # parameter tf.sg_initializer w = tf.sg_initializer.he_uniform('W', (opt.size[0], opt.size[1], opt.dim, opt.in_dim)) b = tf.sg_initializer.constant('b', opt.dim) if opt.bias else 0 # tedious shape handling for conv2d_transpose shape = tensor.get_shape().as_list() out_shape = [tf.shape(tensor)[0], shape[1] * opt.stride[1], shape[2] * opt.stride[2], opt.dim] # apply convolution out = tf.nn.conv2d_transpose(tensor, w, output_shape=tf.stack(out_shape), strides=opt.stride, padding=opt.pad) + b # reset shape is needed because conv2d_transpose() erase all shape information. # noinspection PyUnresolvedReferences out.set_shape([None, out_shape[1], out_shape[2], opt.dim]) return out
@tf.sg_layer_func
[docs]def sg_upconv1d(tensor, opt): r"""Applies 1-D a up convolution (or convolution transpose). Args: tensor: A 3-D `Tensor` (automatically passed by decorator). opt: size: A positive `integer` representing `[kernel width]`. As a default it is set to 4 stride: A positive `integer` representing stride dimension. As a default it is set to 2 in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. pad: Either `SAME` (Default) or `VALID`. bias: Boolean. If True, biases are added. Returns: A `Tensor` with the same type as `tensor`. """ # default options opt += tf.sg_opt(size=4, stride=2, pad='SAME') opt.size = [opt.size, 1] opt.stride = [1, opt.stride, 1, 1] # parameter tf.sg_initializer w = tf.sg_initializer.he_uniform('W', (opt.size[0], opt.size[1], opt.dim, opt.in_dim)) b = tf.sg_initializer.constant('b', opt.dim) if opt.bias else 0 # make 4-D tensor tensor = tensor.sg_expand_dims(axis=2) # tedious shape handling for conv2d_transpose shape = tensor.get_shape().as_list() out_shape = [tf.shape(tensor)[0], shape[1] * opt.stride[1], shape[2] * opt.stride[2], opt.dim] # apply convolution out = tf.nn.conv2d_transpose(tensor, w, output_shape=tf.stack(out_shape), strides=opt.stride, padding=opt.pad) + b # reset shape is needed because conv2d_transpose() erase all shape information. # noinspection PyUnresolvedReferences out.set_shape([None, out_shape[1], out_shape[2], opt.dim]) # squeeze out = out.sq_squeeze(dim=2) return out
@tf.sg_layer_func
[docs]def sg_espcn(tensor, opt): r"""Applies a 2-D efficient sub pixel convolution. (see [Shi et al. 2016](http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf) Args: tensor: A 4-D `Tensor` (automatically passed by decorator). opt: size: A tuple/list of positive integers of length 2 representing `[kernel height, kernel width]`. Can be an integer if both values are the same. If not specified, (3, 3) is set implicitly. stride: A tuple/list of positive integers of length 2 or 4 representing stride dimensions. If the length is 2, i.e., (a, b), the stride is `[1, a, b, 1]`. If the length is 4, i.e., (a, b, c, d), the stride is `[a, b, c, d]`. Can be an integer. If the length is a, the stride is `[1, a, a, 1]`. Default value is [1, 1, 1, 1]. in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. pad: Either `SAME` (Default) or `VALID`. bias: Boolean. If True, biases are added. factor: factor to multiply shape by. Default is 2. Returns: A `Tensor` with the same type as `tensor`. """ # default options opt += tf.sg_opt(size=(3, 3), stride=(1, 1, 1, 1), pad='SAME', factor=2) opt.size = opt.size if isinstance(opt.size, (tuple, list)) else [opt.size, opt.size] opt.stride = opt.stride if isinstance(opt.stride, (tuple, list)) else [1, opt.stride, opt.stride, 1] opt.stride = [1, opt.stride[0], opt.stride[1], 1] if len(opt.stride) == 2 else opt.stride # parameter initialize w = tf.sg_initializer.he_uniform('W', (opt.size[0], opt.size[1], opt.in_dim, opt.dim * opt.factor * opt.factor)) b = tf.sg_initializer.constant('b', opt.dim) if opt.bias else 0 # apply convolution out = tf.nn.conv2d(tensor, w, strides=opt.stride, padding=opt.pad) + b # apply periodic shuffle out = out.sg_periodic_shuffle(factor=opt.factor) return out
# # RNN layers #
[docs]def sg_emb(**kwargs): r"""Returns a look-up table for embedding. kwargs: name: A name for the layer. emb: A 2-D array (optional). If None, the resulting tensor should have the shape of `[vocabulary size, embedding dimension size]`. Note that its first row is filled with 0's associated with padding. in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. voca_size: A positive integer. The size of vocabulary. Returns: A 2-D `Tensor` of float32. """ opt = tf.sg_opt(kwargs) assert opt.name is not None, 'name is mandatory.' if opt.emb is None: # initialize embedding matrix assert opt.voca_size is not None, 'voca_size is mandatory.' assert opt.dim is not None, 'dim is mandatory.' w = tf.sg_initializer.he_uniform(opt.name, (opt.voca_size - 1, opt.dim)) else: # use given embedding matrix w = tf.sg_initializer.external(opt.name, value=opt.emb) # 1st row should be zero and not be updated by backprop because of zero padding. emb = tf.concat([tf.zeros((1, opt.dim), dtype=tf.sg_floatx), w], 0) return emb
# layer normalization for rnn def _ln_rnn(x, gamma, beta): r"""Applies layer normalization. Normalizes the last dimension of the tensor `x`. Args: x: A `Tensor`. gamma: A constant `Tensor`. Scale parameter. Default is 1. beta: A constant `Tensor`. Offset parameter. Default is 0. Returns: A `Tensor` with the same shape as `x`. """ # calc layer mean, variance for final axis mean, variance = tf.nn.moments(x, axes=[len(x.get_shape()) - 1], keep_dims=True) # apply layer normalization x = (x - mean) / tf.sqrt(variance + tf.sg_eps) # apply parameter return gamma * x + beta @tf.sg_rnn_layer_func
[docs]def sg_rnn(tensor, opt): r"""Applies a simple rnn. Args: tensor: A 3-D `Tensor` (automatically passed by decorator). opt: in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. bias: Boolean. If True, biases are added. ln: Boolean. If True, layer normalization is applied. init_state: A 2-D `Tensor`. If None, the initial state is set to zeros. last_only: Boolean. If True, the outputs in the last time step are returned. Returns: A `Tensor`. If last_only is True, the output tensor has shape [batch size, dim]. Otherwise, [batch size, time steps, dim]. """ # layer normalization # noinspection PyPep8 ln = lambda v: _ln_rnn(v, gamma, beta) if opt.ln else v # step function def step(hh, x): # simple rnn y = ln(tf.matmul(x, w) + tf.matmul(hh, u) + (b if opt.bias else 0)) return y # parameter initialize w = tf.sg_initializer.orthogonal('W', (opt.in_dim, opt.dim)) u = tf.sg_initializer.identity('U', opt.dim) if opt.bias: b = tf.sg_initializer.constant('b', opt.dim) # layer normalization parameters if opt.ln: # offset, scale parameter beta = tf.sg_initializer.constant('beta', opt.dim) gamma = tf.sg_initializer.constant('gamma', opt.dim, value=1) # initial state init_h = opt.init_state if opt.init_state is not None \ else tf.zeros((tensor.get_shape().as_list()[0], opt.dim), dtype=tf.sg_floatx) # do rnn loop h, out = init_h, [] for i in range(tensor.get_shape().as_list()[1]): # apply step func h = step(h, tensor[:, i, :]) # save result out.append(h.sg_expand_dims(axis=1)) # merge tensor if opt.last_only: out = out[-1].sg_squeeze(axis=1) else: out = tf.concat(out, 1) return out
@tf.sg_rnn_layer_func
[docs]def sg_gru(tensor, opt): r"""Applies a GRU. Args: tensor: A 3-D `Tensor` (automatically passed by decorator). opt: in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. bias: Boolean. If True, biases are added. ln: Boolean. If True, layer normalization is applied. init_state: A 2-D `Tensor`. If None, the initial state is set to zeros. last_only: Boolean. If True, the outputs in the last time step are returned. Returns: A `Tensor`. If last_only is True, the output tensor has shape [batch size, dim]. Otherwise, [batch size, time steps, dim]. """ # layer normalization # noinspection PyPep8 ln = lambda v: _ln_rnn(v, gamma, beta) if opt.ln else v # step func def step(hh, x): # update gate z = tf.sigmoid(ln(tf.matmul(x, w_z) + tf.matmul(hh, u_z) + (b_z if opt.bias else 0))) # reset gate r = tf.sigmoid(ln(tf.matmul(x, w_r) + tf.matmul(hh, u_r) + (b_r if opt.bias else 0))) # h_hat hh = tf.tanh(ln(tf.matmul(x, w_h) + tf.matmul(r * hh, u_h) + (b_h if opt.bias else 0))) # final output y = (1. - z) * hh + z * hh return y # parameter initialize w_z = tf.sg_initializer.orthogonal('W_z', (opt.in_dim, opt.dim)) u_z = tf.sg_initializer.identity('U_z', opt.dim) w_r = tf.sg_initializer.orthogonal('W_r', (opt.in_dim, opt.dim)) u_r = tf.sg_initializer.identity('U_r', opt.dim) w_h = tf.sg_initializer.orthogonal('W_h', (opt.in_dim, opt.dim)) u_h = tf.sg_initializer.identity('U_h', opt.dim) if opt.bias: b_z = tf.sg_initializer.constant('b_z', opt.dim) b_r = tf.sg_initializer.constant('b_r', opt.dim) b_h = tf.sg_initializer.constant('b_h', opt.dim) # layer normalization parameters if opt.ln: # offset, scale parameter beta = tf.sg_initializer.constant('beta', opt.dim) gamma = tf.sg_initializer.constant('gamma', opt.dim, value=1) # initial state init_h = opt.init_state if opt.init_state is not None \ else tf.zeros((tensor.get_shape().as_list()[0], opt.dim), dtype=tf.sg_floatx) # do rnn loop h, out = init_h, [] for i in range(tensor.get_shape().as_list()[1]): # apply step function h = step(h, tensor[:, i, :]) # save result # noinspection PyUnresolvedReferences out.append(h.sg_expand_dims(axis=1)) # merge tensor if opt.last_only: out = out[-1].sg_squeeze(axis=1) else: out = tf.concat(out, 1) return out
@tf.sg_rnn_layer_func
[docs]def sg_lstm(tensor, opt): r"""Applies an LSTM. Args: tensor: A 3-D `Tensor` (automatically passed by decorator). opt: in_dim: A positive `integer`. The size of input dimension. dim: A positive `integer`. The size of output dimension. bias: Boolean. If True, biases are added. ln: Boolean. If True, layer normalization is applied. init_state: A 2-D `Tensor`. If None, the initial state is set to zeros. last_only: Boolean. If True, the outputs in the last time step are returned. Returns: A `Tensor`. If last_only is True, the output tensor has shape [batch size, dim]. Otherwise, [batch size, time steps, dim]. """ # layer normalization # noinspection PyPep8 ln = lambda v: _ln_rnn(v, gamma, beta) if opt.ln else v # step func def step(hh, cc, x): # forget gate f = tf.sigmoid(ln(tf.matmul(x, w_f) + tf.matmul(hh, u_f) + (b_f if opt.bias else 0))) # input gate ii = tf.sigmoid(ln(tf.matmul(x, w_i) + tf.matmul(hh, u_i) + (b_i if opt.bias else 0))) # new cell value c_new = tf.tanh(ln(tf.matmul(x, w_c) + tf.matmul(hh, u_c) + (b_c if opt.bias else 0))) # out gate o = tf.sigmoid(ln(tf.matmul(x, w_o) + tf.matmul(hh, u_o) + (b_o if opt.bias else 0))) # cell update cell = f * cc + ii * c_new # final output y = o * tf.tanh(cell) return y, cell # parameter initialize w_i = tf.sg_initializer.orthogonal('W_i', (opt.in_dim, opt.dim)) u_i = tf.sg_initializer.identity('U_i', opt.dim) w_f = tf.sg_initializer.orthogonal('W_f', (opt.in_dim, opt.dim)) u_f = tf.sg_initializer.identity('U_f', opt.dim) w_o = tf.sg_initializer.orthogonal('W_o', (opt.in_dim, opt.dim)) u_o = tf.sg_initializer.identity('U_o', opt.dim) w_c = tf.sg_initializer.orthogonal('W_c', (opt.in_dim, opt.dim)) u_c = tf.sg_initializer.identity('U_c', opt.dim) if opt.bias: b_i = tf.sg_initializer.constant('b_i', opt.dim) b_f = tf.sg_initializer.constant('b_f', opt.dim) b_o = tf.sg_initializer.constant('b_o', opt.dim, value=1) b_c = tf.sg_initializer.constant('b_c', opt.dim) # layer normalization parameters if opt.ln: # offset, scale parameter beta = tf.sg_initializer.constant('beta', opt.dim) gamma = tf.sg_initializer.constant('gamma', opt.dim, value=1) # initial state init_h = opt.init_state if opt.init_state is not None \ else tf.zeros((tensor.get_shape().as_list()[0], opt.dim), dtype=tf.sg_floatx) # do rnn loop h, c, out = init_h, init_h, [] for i in range(tensor.get_shape().as_list()[1]): # apply step function h, c = step(h, c, tensor[:, i, :]) # save result out.append(h.sg_expand_dims(axis=1)) # merge tensor if opt.last_only: out = out[-1].sg_squeeze(axis=1) else: out = tf.concat(out, 1) return out