Source code for sugartensor.sg_initializer

from __future__ import absolute_import
import sugartensor as tf
# noinspection PyPackageRequirements
import numpy as np


__author__ = 'buriburisuri@gmail.com'


[docs]def constant(name, shape, value=0, dtype=tf.sg_floatx, summary=True): r"""Creates a tensor variable of which initial values are `value` and shape is `shape`. Args: name: The name of new variable. shape: A tuple/list of integers or an integer. If shape is an integer, it is converted to a list. value: A Python scalar. All elements of the initialized variable will be set to this value. Default is 0. dtype: The data type. Only floating point types are supported. Default is float32. summary: If True, add this constant to tensor board summary. Returns: A `Variable`. """ shape = shape if isinstance(shape, (tuple, list)) else [shape] x = tf.get_variable(name, shape, dtype=dtype, initializer=tf.constant_initializer(value)) # add summary if not tf.get_variable_scope().reuse and summary: tf.sg_summary_param(x) return x
[docs]def uniform(name, shape, scale=0.05, dtype=tf.sg_floatx, summary=True): r"""Creates a tensor variable of which initial values are random numbers based on uniform distribution. Note that the default value of `scale` (=0.05) is different from the min/max values (=0.0, 1.0) of tf.random_uniform_initializer. Args: name: The name of the new variable. shape: A tuple/list of integers or an integer. If shape is an integer, it's converted to a list. scale: A Python scalar. All initial values should be in range `[-scale, scale)`. Default is .05. dtype: The data type. Only floating point types are supported. Default is float32. summary: If True, add this constant to tensor board summary. Returns: A `Variable`. """ shape = shape if isinstance(shape, (tuple, list)) else [shape] x = tf.get_variable(name, shape, dtype=dtype, initializer=tf.random_uniform_initializer(minval=-scale, maxval=scale)) # add summary if not tf.get_variable_scope().reuse and summary: tf.sg_summary_param(x) return x
[docs]def he_uniform(name, shape, scale=1, dtype=tf.sg_floatx, summary=True): r"""See [He et al. 2015](http://arxiv.org/pdf/1502.01852v1.pdf) Args: name: The name of new variable shape: A tuple/list of integers. scale: A Python scalar. Scale to initialize. Default is 1. dtype: The data type. Default is float32. summary: If True, add this constant to tensor board summary. Returns: A `Variable`. """ fin, _ = _get_fans(shape) s = np.sqrt(1. * scale / fin) return uniform(name, shape, s, dtype, summary)
[docs]def glorot_uniform(name, shape, scale=1, dtype=tf.sg_floatx, summary=True): r"""See [Glorot & Bengio. 2010.](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf) Args: name: The name of new variable shape: A tuple/list of integers. scale: A Python scalar. Scale to initialize. Default is 1. dtype: The data type. Default is float32. summary: If True, add this constant to tensor board summary. Returns: A `Variable`. """ fin, fout = _get_fans(shape) s = np.sqrt(6. * scale / (fin + fout)) return uniform(name, shape, s, dtype, summary)
[docs]def identity(name, dim, scale=1, dtype=tf.sg_floatx, summary=True): r"""Creates a tensor variable of which initial values are of an identity matrix. Note that the default value of `scale` (=0.05) is different from the min/max values (=0.0, 1.0) of tf.random_uniform_initializer. For example, ``` identity("identity", 3, 2) => [[2. 0. 0.] [0. 2. 0.] [0. 0. 2.]] ``` Args: name: The name of new variable. dim: An int. The size of the first and second dimension of the output tensor. scale: A Python scalar. The value on the diagonal. dtype: The type of the elements of the resulting tensor. summary: If True, add this constant to tensor board summary. Returns: A 2-D `Variable`. """ x = tf.get_variable(name, initializer=tf.constant(np.eye(dim) * scale, dtype=dtype)) # add summary if not tf.get_variable_scope().reuse and summary: tf.sg_summary_param(x) return x
[docs]def orthogonal(name, shape, scale=1.1, dtype=tf.sg_floatx, summary=True): r"""Creates a tensor variable of which initial values are of an orthogonal ndarray. See [Saxe et al. 2014.](http://arxiv.org/pdf/1312.6120.pdf) Args: name: The name of new variable. shape: A tuple/list of integers. scale: A Python scalar. dtype: Either float32 or float64. summary: If True, add this constant to tensor board summary. Returns: A `Variable`. """ flat_shape = (shape[0], np.prod(shape[1:])) a = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) # pick the one with the correct shape q = u if u.shape == flat_shape else v q = q.reshape(shape) # create variable x = tf.get_variable(name, initializer=tf.constant(scale * q[:shape[0], :shape[1]], dtype=dtype)) # add summary if not tf.get_variable_scope().reuse and summary: tf.sg_summary_param(x) return x
[docs]def external(name, value, dtype=tf.sg_floatx, summary=True): r"""Creates a tensor variable of which initial values are `value`. For example, ``` external("external", [3,3,1,2]) => [3. 3. 1. 2.] ``` Args: name: The name of new variable. value: A constant value (or list) of output type `dtype`. dtype: The type of the elements of the resulting tensor. summary: If True, add this constant to tensor board summary. Returns: A `Variable`. Has the same contents as `value` of `dtype`. """ # create variable x = tf.get_variable(name, initializer=tf.constant(value, dtype=dtype)) # add summary if not tf.get_variable_scope().reuse and summary: tf.sg_summary_param(x) return x
def _get_fans(shape): r"""Returns the size of input dimension and output dimension, given `shape`. Args: shape: A list of integers. Returns: fan_in: An int. The value of input dimension. fan_out: An int. The value of output dimension. """ if len(shape) == 2: fan_in = shape[0] fan_out = shape[1] elif len(shape) == 4 or len(shape) == 5: # assuming convolution kernels (2D or 3D). kernel_size = np.prod(shape[:2]) fan_in = shape[-2] * kernel_size fan_out = shape[-1] * kernel_size else: # no specific assumptions fan_in = np.sqrt(np.prod(shape)) fan_out = np.sqrt(np.prod(shape)) return fan_in, fan_out